Total minus domination in k-partite graphs
نویسندگان
چکیده
A function f defined on the vertices of a graph G = (V ,E), f : V → {−1, 0, 1} is a total minus dominating function (TMDF) if the sum of its values over any open neighborhood is at least one. The weight of a TMDF is the sum of its function values over all vertices. The total minus domination number, denoted by −t (G), of G is the minimum weight of a TMDF on G. In this paper, a sharp lower bound on −t of k-partite graphs is given. © 2006 Elsevier B.V. All rights reserved.
منابع مشابه
The minus k-domination numbers in graphs
For any integer , a minus k-dominating function is afunction f : V (G) {-1,0, 1} satisfying w) for every vertex v, where N(v) ={u V(G) | uv E(G)} and N[v] =N(v)cup {v}. The minimum of the values of v), taken over all minusk-dominating functions f, is called the minus k-dominationnumber and is denoted by $gamma_k^-(G)$ . In this paper, we introduce the study of minu...
متن کاملMinus domination number in k-partite graphs
A function f de1ned on the vertices of a graph G = (V; E); f :V → {−1; 0; 1} is a minus dominating function if the sum of its values over any closed neighborhood is at least one. The weight of a minus dominating function is f(V ) = ∑ v∈V f(v). The minus domination number of a graph G, denoted by −(G), equals the minimum weight of a minus dominating function of G. In this paper, a sharp lower bo...
متن کاملAn application of Turán theorem to domination in graphs ∗
3 A function f : V (G) → {+1,−1} defined on the vertices of a graph G is a signed domi4 nating function if for any vertex v the sum of function values over its closed neighborhood 5 is at least one. The signed domination number γs(G) of G is the minimum weight of a 6 signed dominating function on G. By simply changing “{+1,−1}” in the above definition 7 to “{+1, 0,−1}”, we can define the minus ...
متن کاملAn application of the Turán theorem to domination in graphs
A function f : V (G) → {+1,−1} defined on the vertices of a graph G is a signed dominating function if for any vertex v the sum of function values over its closed neighborhood is at least 1. The signed domination number γs(G) of G is the minimum weight of a signed dominating function on G. By simply changing “{+1,−1}” in the above definition to “{+1, 0,−1}”, we can define the minus dominating f...
متن کاملTwin minus domination in directed graphs
Let $D=(V,A)$ be a finite simple directed graph. A function$f:Vlongrightarrow {-1,0,1}$ is called a twin minus dominatingfunction (TMDF) if $f(N^-[v])ge 1$ and $f(N^+[v])ge 1$ for eachvertex $vin V$. The twin minus domination number of $D$ is$gamma_{-}^*(D)=min{w(f)mid f mbox{ is a TMDF of } D}$. Inthis paper, we initiate the study of twin minus domination numbersin digraphs and present some lo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 306 شماره
صفحات -
تاریخ انتشار 2006